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Scaling fields in the two-dimensional Abelian sandpile model
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We consider the unoriented two-dimensional Abelian sandpile model from a perspective based on two-
dimensional~conformal! field theory. We compute lattice correlation functions for various cluster variables~at
and off criticality!, from which we infer the field-theoretic description in the scaling limit. We find perfect
agreement with the predictions of ac522 conformal field theory and its massive perturbation, thereby
providing direct evidence for conformal invariance and more generally for a description in terms of a local field
theory. The question of the height 2 variable is also addressed, with, however, no definite conclusion yet.
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I. INTRODUCTION

Sandpile models have been invented by Bak, Tang,
Wiesenfeld@1# as prototypical examples for a class of mo
els that show self-organized criticality. The main peculiar
of these models is that they possess a dynamics that d
them to a critical regime, robust against various pertur
tions. The ineluctable criticality as well as the robustness
these specific dynamics could provide a universal expla
tion of the ubiquity of power laws in natural phenomen
Various physical situations have been discussed follow
this idea; see the recent books@2,3#.

Sandpile models are among the simplest models show
self-organized criticality. Although their physical relevan
can be questioned, it is believed that they have all the
tures that should be present in more complicated an
physical models. Therefore they constitute a useful pl
ground where the most important features can be underst

One of the most interesting models is the two-dimensio
unoriented Abelian sandpile model~ASM! @1#, which we
first briefly recall ~recent reviews are@4,5#!. The model is
defined on anL3M square lattice. At each sitei, we assign
a random variablehi , taking its values in the set$1,2,3,4%.
We think ofhi as a height variable, which counts the numb
of grains of sand ati. Thus a sand configuration is specifie
by a set of values$hi% i of the height variables. A configura
tion is stable if allhi<4, and unstable ifhi.4 for one or
more sites. The number of stable configurations is equa
4LM.

The discrete dynamics of the model takes a stable c
figuration Ct at time t to another stable configurationCt11,
and is defined in two steps. The first step is the addition
sand: one grain of sand is dropped on a randomly chosen
of Ct , and this produces a new configurationCt8 . The second
step is the relaxation toCt11. If Ct8 is stable, we simply se
Ct115Ct8 . If not, the site wherehi.4 topples: it loses four
grains of sand, and each of its neighbors receives one g
something we write in the formhj→hj2D i j for all sites j,
with D the discrete Laplacian. In the process, one neigh
can have its heighth.4, in which case it too topples: it lose
four grains of sand, each of its neighbors receiving one gr
And so on for each site that has a heighth.4, until we reach
a stable configuration.Ct11 is then set equal to this new
1063-651X/2001/64~6!/066130~19!/$20.00 64 0661
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stable configuration. The relaxation process is well defin
it always stops~sand can leave the system at the boundar!
and produces the same resultCt11 independently of the orde
in which the topplings are performed~the Abelian property!.

One can let an initial distribution over the stable config
rations evolve in time according to the dynamics, and exa
ine its time limit. Under mild assumptions, one shows@6#
that all initial distributions converge to a well-defined an
unique distributionP* , called the SOC~for self-organized
critical! state. The theory of Markov chains and the Abeli
property allow for a complete characterization of it:P* is
uniform on the setR of so-called recurrent configurations
and is zero elsewhere~the transient configurations!. The
number of recurrent configurations isuRu5detD
;(3.21)LM, with D the discrete Laplacian on theL3M lat-
tice with open boundary conditions. Although the counti
of recurrent configurations is easy, the criterion that actua
decides whether a given stable configuration is recurren
transient is well known@6,7# but hard and nonlocal: in a
generic case, one has to scan the whole configuration in
der to decide whether it is recurrent or not. Explicit calcu
tions are therefore difficult~and few!.

From the point of view of critical systems and conform
field theory, one is interested in the thermodynamic lim
limL,M→`P* . The result should be a probability measure
the space of spatially unbounded configurations, or equ
lently on the infinite collection of random variableshi . De-
spite the fact that these variables are strongly coupled—
couplings are even nonlocal because of the recurre
condition—their correlation functions seem to be of t
usual, local form. In the scaling limit, one could therefo
hope to recover a local field theory.

There are indications that indeed a conformal field the
emerges, as in ordinary critical, equilibrium lattice mode
In @7#, a connection with spanning trees was establish
which suggests a relationship with theq50 limit of the
q-state Potts model, and hence with ac522 conformal field
theory, a value confirmed by calculation of the universal
nite size correction to the free energy on a finite strip@7#. The
two-site probability Prob@hi5hj51# was shown in@8# to
decay algebraically, with an exponent that can be easily
commodated in ac522 free Grassmanian scalar fie
theory @9#. The two-site probabilities for height variables o
the boundary of a half-plane domain have also been c
©2001 The American Physical Society30-1
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STÉPHANE MAHIEU AND PHILIPPE RUELLE PHYSICAL REVIEW E64 066130
puted in@10,11#, and show the same algebraic falloff as t
height 1 variables in the bulk.

Beyond these concordant elements, no systematic inv
gation in the sandpile model has been made, to our kno
edge, which can solidly confirm the connection with ac5
22 conformal field theory. It is our purpose to provide
more explicit link between the two. We do this by computi
multisite probabilities of various height variables, and
comparing them with the conformal predictions. More sp
cifically, we compute the scaling limits of the two-, three
and four-site correlations of height 1 variables, but also
other lattice variables, namely, finite subconfigurations t
can be handled by the technique developed in@8#.

In fact, we compute these correlations in an off-critic
extension of the Abelian sandpile model. We evaluate th
in the scaling regime, extract the scaling limit, and then
tablish a correspondence with a field theory. In this way
strengthen the field-theoretic connection away from critic
ity, by relating a massive perturbation of the ASM to t
massive extension of thec522 fermionic field theory. One
can therefore probe more deeply the structure of both
tures, leaving little doubt about the identifications that are
be made.

The conclusion these calculations allow us to draw is t
the c522 theory, and its massive extension, seems to p
vide a field-theoretic description of the height profile of t
sandpile model. At least for the cluster variables examine
this paper, this is a statement that we could verify explici
Other important spatial, nondynamical features of the S
state must be studied. These include boundary features
avalanche distributions. The latter are undoubtedly m
more difficult to handle, because they lie at a higher leve
nonlocality than the height variables, since they depend
height values in unbounded regions. Whether they can
accounted for by the nonlocal sectors of thec522 confor-
mal theory remains a largely open question.

II. LATTICE CALCULATIONS
IN THE SANDPILE MODEL

As recalled above, explicit calculations in the bulk of t
lattice are notoriously hard, because of the nonlocal natur
the SOC state~probability measure! P* .

All four one-site probabilities Prob@hi5a#, for a
51,2,3,4, have been computed exactly in the thermodyna
limit, but the calculation fora>2 @12# is already formidably
more complicated than fora51 @8#. The only two-site prob-
ability that has been computed is again for the unit hei
variables@8#.

The technique used to compute the correlation of two u
height variables is a particular case of a beautiful idea
forward by Majumdar and Dhar@8#. It is based on the im-
portant notion of forbidden subconfigurations~FSCs!, and its
relation to recurrent configurations. A clusterF of sites, with
its heightshi , is a FSC if, for each sitej PF, the number of
sites inF and connected toj is bigger than or equal tohj .
Simple examples of FSCs are two adjacent 1s~11!, a linear
arrangement~121!, or a cross-shape arrangement with fo
1s surrounding a central site with any height value. A co
06613
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figuration is then recurrent if and only if it contains no FS
@6,7#.

The idea used in@8# allows us to compute the probabilit
of occurrence, in the SOC state, of any cluster that beco
an FSC if any of its heights is decreased by one unit.
simple case is a height 2 next to a height 1, but more
amples are given in Fig. 1. Following@13#, let us call them
weakly allowed cluster variables.

Let Sbe such a cluster. The authors of@8# show how one
can define a new sandpile model, with its own toppling ru
~and a new matrixD8!, such that the number of its recurre
configurations is the number, in the original model, of rec
rent configurations that containS. From this, a simple deter
minantal formula follows, Prob(S)5detD8/detD. Because
the new sandpile model is obtained by modifying the origin
one in the region localized aroundS, the ratio of the two
determinants reduces to a finite determinant, even for an
finite lattice.

This technique has been used to compute the probabil
of various subconfigurations, like those in Fig. 1. The si
plest one is the cluster reduced to one site, with height eq
to 1. In this case, the new model is obtained by changing
toppling rules at four sites~the height 1 and three neighbors!.
A 434 determinant then yieldsP(1)[Prob@hi51#
5(2/p2)(122/p);0.074. Allowing for disconnected clus
ters leads to multisite correlations such as the two-site c
relation of unit heights:

Prob@hi5hj51#5P~1!2F12
1

2r 4 1•••G , r 5u i 2 j u@1.

~2.1!

It was also remarked in@8# that more general clusters—fo
instance, a single site with height equal to 2—can be hand
using the same ideas, but the corresponding probabilities
come infinite series, the terms of which involve weakly a
lowed clusters, of increasing size. Unfortunately, these se
seem to be slowly convergent.

In general, the way the original sandpile model is mo
fied is by removing some of the bonds linkingS to its nearest
neighborhood, and at the same time by reducing the thre

FIG. 1. On the first two lines are shown the ten smallest wea
allowed cluster variables, up to orientations, which contain no m
than four sites. Taking the different orientations into account ma
a total of 57 clusters of weight smaller than or equal to 4. In ad
tion, calculations involving the four clusters on the last line will b
considered in the text. All these clusters will be numberedS0 to S13

from left to right and top to bottom. The reason for including t
last two clusters is explained in Sec. VII.
0-2
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SCALING FIELDS IN THE TWO-DIMENSIONAL . . . PHYSICAL REVIEW E 64 066130
old at which the sites become unstable~4 in the original
model!, so that the threshold at every site remains equal to
connectivity. These modifications affect all the sites ofS,
plus a certain number of sites that are nearest neighborsS.
All together they form a set we callMS , the cardinal of
which depends on the shape ofS. The new toppling matrix is
then given byD85D1B, where the symmetric matrixB has
entriesBi j 51 if the bond linkingi to j has been removed
Bii 52n if n bonds off the sitei have been removed, and
zero otherwise. Then the probability ofS ~in the original
model! is

P~S!5
detD8

detD
5det~I1GB!5det~I1GB!uMS

. ~2.2!

BecauseB is zero outside the finite setMS , the determinant
is finite, in fact of sizeuMSu, but requires knowledge of th
Green functionG[D21 of the Laplacian at all sites belong
ing to MS .

In the above example whereS is just one site with a
height equal to 1, the modifications can be pictorially d
scribed as follows:

The dashed segments represent the removed bonds, an
numbers on the right lattice indicate the thresholds at wh
the sites become unstable and topple.

In fact, in the modified lattice shown on the right, the on
site to which the 1 is connected has a height bigger tha
equal to 2. So one could as well decrease its height an
threshold by 1, and remove the connection. In this way,
site with a height originally equal to 1 is completely cut o
r
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d
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. T
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from the rest of the lattice, defining a different modificatio
of the original ASM.1 Either of them can be used to compu
correlations involving heights 1.

Correspondingly, the matrixB that specifies the modifica
tions is a 434 or a 535 matrix given by~in an obvious
ordering!

B5S 23 1 1 1

1 21 0 0

1 0 21 0

1 0 0 21

D
or

S 23 1 1 1 1

1 21 0 0 0

1 0 21 0 0

1 0 0 21 0

1 0 0 0 21

D . ~2.3!

For bigger clusters, there is a fair amount of ambiguity in t
way the modifications are made in order to freeze the clu
heights to what we want. These modifications can affect
gions of different sizes, and so can be more or less com
tationally convenient. The least economical solution is
analog of the second modification explained above for
unit height. It is also the easiest to describe: one simply c
the cluster off the rest of the lattice, removing all bon
inside the cluster and all connections between the cluster
the outside lattice. There are many other choices of inter
diate efficiency. For the second cluster in Fig. 1, for instan
namely, a 2 next to a 1, one may consider the following thr
modifications~among others!:
nts
re-
ins
nd

mi-

ne
f the
atter
with correspondingB matrices of dimension 8, 7, or 6. Fo
bigger clusters, the difference can be computationally not
able, and so choosing the modifications that affect the sm

1Strictly speaking, in this second modified ASM, the removal
the bond connecting the height 1 to its western neighbor shoul
supplemented by the creation of a bond connecting the height 1
sink site, so that sand brought in by seeding can be evacuated
part of the modifications that affects the sink site plays no r
whatsoever, so we may ignore it completely. See Appendix B fo
detailed argument.
e-
ll-

est possible region makes the calculation of determina
easier.2 So one should cut as few links as possible, a p
scription that makes sure that the modified ASM rema
conservative where the original one is: the removal of a bo

f
be

a
he

e
a

2The reader familiar with the technique knows that these deter
nants can be reduced by appropriate summations of rows~or col-
umns!. The gain in size is equal to the size of the cluster o
considers, but it has its price, because it renders the entries o
reduced determinant more complex. This gain is the same no m
how the ASM is modified.
0-3
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STÉPHANE MAHIEU AND PHILIPPE RUELLE PHYSICAL REVIEW E64 066130
off one site is always accompanied by the lowering by 1
the threshold at that site or, equivalently, theB matrix has
row and column sums equal to 0.

When the clusterS5øk Sk is disconnected, the matrixB
is the direct sum of submatricesBk . The probability Prob(S)
~the correlation of the subpartsSk) involves the Green func
tion G( i , j )5G(0,i 2 j ) at all sitesi , j of S, and thus depend
on the relative locations and orientations of the variousSk’s,
and in particular on their separation distances. As the or
nal sandpile model is invariant under lattice translation,
probabilities retain the translation invariance. ForS contain-
ing two heights equal to 1, separated by a distancer, the
evaluation of the 838 determinant yields the dominant ter
r 24 given in Eq.~2.1!, independently of the angular distanc
of the two sites.

Precisely in the case in whichS is disconnected and con
tains different pieces separated by large distances, a sim
but important observation can be made. Because the p
ability of S is going to depend on the Green functio
G(zk ,zk8); loguzk2zk8u evaluated at points where the su
parts are located, one could expect at first sight a logarith
dependence in the separation distances. However, due t
property that sand is conserved in the modified ASM,
probability in fact depends only on the derivatives~or finite
differences! of the Green function. This removes the log
rithmic dependences and turns all correlations into ratio
series in the various distances (zk2zk8).

III. THE MASSIVE SANDPILE MODEL

The previous section summarized the calculation of c
relations of cluster variables in the standard ASM. Ev
though it is critical, and self-organized in the dynamic
sense, one can drive it off criticality by switching on releva
perturbations. There are various ways of doing it, but one
the simplest is to add dissipation, whose rate is controlled
a parametert. In effect this introduces a massm;At, or
equivalently a nonzero reduced temperaturet. The resulting
model can be described as a massive~or thermal! perturba-
tion of the massless, critical sandpile model. For the purp
of comparing the correlations in the ASM with those of
local field theory, the inclusion of some neighborhood of t
critical point is important as it strengthens the connection

The way a mass can be introduced in the model is m
straightforward, and corresponds to a dissipation of s
each time a toppling takes place. We define the pertur
ASM by its toppling matrix~we suppress the explicit depen
dence onx)

D i , j5H x if i 5 j ,

21 if i and j are nearest neighbors,

0 otherwise.
~3.1!

The external driving rate of the sandpile remains the sa
~one grain per unit of time!, but the threshold beyond whic
the sites become unstable is increased from 4 tox. As a
consequence, the height variables now take values betwe
and x. Each time a site topples,t5x24>0 grains of sand
are dissipated.
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In order to assess the robustness of their SOC featu
perturbations of sandpile models have often been discus
with various and sometimes surprising conclusions; see,
instance,@14# for a review. Among the many contribution
on the subject,@15# was one of the first attempts to see ho
the nonconservation of sand in the toppling rules can a
the critical properties of the model. In particular, the mass
perturbation defined above in Eq.~3.1! corresponds to the
globally dissipative model studied in that paper, and
which the authors found that the avalanche distributions
cay exponentially. More recently, the same perturbation w
reconsidered in@16#, in which the exponential decay of th
two-site probability for unit height variables, our Eq.~4.4!
below, was proved.

The advantage of the perturbation~3.1! is that it allows
the same calculations as the nonperturbed model, in the
that has been recalled in Sec. II. One can in particular co
pute the correlation functions from the same formulas, w
however, two minor changes. The first one is of course t
one uses the massive Green function, with a mass fixed
Ax24. The second one concerns theB matrices that define
the modified ASM. Because the height variables now ta
values from 1 up tox, the diagonal entries ofB correspond-
ing to sites of the clusterS must be set equal to 12x, in
order to lock the heights into their minimal values.~As a
consequence, note that sand is conserved at those sites,
modified model.!

When doing concrete computations, one needs the v
of the Green function at points close to the origin~at sites
belonging to the same connected subpart!, and at points far
from the origin~at sites located in different connected part!.
For the former, one uses a development aroundt50 ~in
powers oft with log t terms!, whereas for the latter one pe
forms a double expansion in inverse powers of the distan
and in ~half-integral! powers of the perturbing parametert.
For arbitrary positions, this development is cumbersome a
depends also on the angular positions. In the calculation
be presented in the following sections, we have theref
restricted ourselves to configurations of clusters that req
the knowledge of the Green function only at points close t
principal or a diagonal axis, for which all useful expressio
are collected in Appendix A.

The field theory enters as a description of the long d
tance regime of the ASM correlations~perturbed or not!. As
usual, this requires at the same time an adjustment of
correlation length, or equivalently of the mass. So we
interested in computing the scaling regime of correlatio
To reach it, we take simultaneously the long distance lim
R5r /a→` and the critical limit3 x245a2M2→0, so that
the productAx24R→Mr defines the effective massM and

3We deliberately take the stand of formally continuing all t
expressions from integer values ofx to arbitrary valuesx>4. Thus
we do not define a family of well-defined sandpile models, para
etrized by a real numberx>4. For x rational, this can easily be
done; however, the limit forx going to four by rational values is no
the usual, original model defined forx54. We suspect that the
model one gets in this specific limit is a model in which the heig
variables are completely decoupled. See@17# for a related discus-
sion.
0-4
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SCALING FIELDS IN THE TWO-DIMENSIONAL . . . PHYSICAL REVIEW E 64 066130
the macroscopic distancesr. The scalea→0 controls the
way the limit is taken, and can be thought of as a latt
spacing.

In the actual calculations of correlation functions, lar
determinants are needed, with entries given by Green fu
tion values, themselves expressed as power series. In
scaling regimex;4, it is convenient to expand all matri
entries and the correlations as power series ofAt. The first
nonzero term in a correlation should then be directly rela
to its scaling limit.

We will finish this section by commenting on the way th
calculations have been done, before presenting in the
section the results for the unit height variables.

Suppose that we want to compute the joined probab
for having a certain clusterS at the origin, say, and anothe
clusterS8 at some sitei. Each cluster comes with its own s
MS or MS8 which contains the sites where the ASM has be
modified, the modifications themselves being specified
the matricesB and B8. According to the discussion of th
previous section, this probability is equal to a determinan

Prob@S~0!, S8~ i !#5detS I1S G00 G0i

Gi0 Gii
D S B 0

0 B8
D D

5detS I1G00B G0i B8

Gi0 B I1Gii B8
D . ~3.2!

The G blocks collectively denote Green function valu
evaluated at two sites belonging to the setMSøMS8 , with in
additionGi05(G0i)

t.
We do not want to know the exact value of this determ

nant, but rather the terms that are dominant in the sca
region, wheni is far from the origin. Using the standar
development of a rankn determinant in terms of the matri
entries,

detA5 (
sPSn

e~s!A1,s(1)A2,s(2)•••An,s(n) , ~3.3!

one may distinguish in Eq.~3.2! several types of term. The
permutationss that do not mix the sites of the clusterSwith
the sites ofS8 produce terms that do not depend on t
distanceu i u separatingS from S8, and thus contribute a term
equal to@Prob(S)#@Prob(S8)#.

The other permutations necessarily involve an even n
ber of entries from the off-diagonal blocks. As all such e
tries are combinations of Green functions, they decay ex
nentially with the distance. Therefore the two-point functi
will be dominated by those terms in the determinant that
quadratic in the off-diagonal Green functions. With the he
of the formulas in Appendix A, these Green functions are
reducible to the singleG( i )5G0,i , and its derivatives.

The quadratic terms come from the permutations that s
one site of the first cluster onto one site of the second clus
and vice-versa~with possibly two other sites!. The contribu-
06613
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tions of all those permutations can be summed up to yie
formula written in terms of the minors of the diagon
blocks:

Prob@S~0!, S8~ i !#5Prob~S!Prob~S8!

2Tr$@Mi ~I1G00B!# t~G0iB8!

3@Mi ~I1Gii B8!# t~Gi0B!%1•••.

~3.4!

Here Mi(A)5(21)i 1 jdet(Aî , ĵ ) denote, up to signs, the mi
nors ofA of maximal order (Aî , ĵ is the matrixA with the i th
row and thej th column removed!. Formula ~3.4! is exact
modulo quartic, sextic, etc. terms in the off-diagonal Gre
functions. It has been used to compute all two-cluster co
lations considered in this article.

In order to determine the dominant term in the perturb
parametert, one still makes an expansion in powers ofAt
~actually the expansions of elements of the diagonal blo
G00 andGii involve the two kinds of termstk/2 andtk/2 log t).
To this end, one develops all Green functions aroundt50
using the formulas of Appendix A, and keeps the first no
zero term in the trace. Since the massM or inverse correla-
tion length is related toAt, a first nonzero contribution of the
form t (x11x2)/2 F„G( iAt),G8( iAt), . . . … determines the scal
ing limit of the correlation, and hence the correspondi
field-theoretic two-point function, in terms of two fields o
scale dimensionsx1 andx2, in the usual way. In this respec
the presence of a logarithmic singularity logt in the final
result would be the signal that the scaling limit is ill define
It turns out, in all the calculations we have performed, th
the first nonzero term scales liket2 ~yielding x11x254).
Because the off-diagonal terms start off likeAt—they are
differences of Green functions at neighboring sites—it
enough to expand all Green functions up to ordert3/2, as has
been done in Appendix A4 ~the three-cluster correlations re
quire expansions to ordert2).

In fact this procedure has anticipated the results on
point. For the purpose of taking the scaling limit, it is th
dominant term int that we want to determine, while th
above procedure determines the dominant term int among
the contributions that are quadratic in the Green functio
So one should also check that no higher than quadratic t
in the Green functions brings at2 contribution. This can
easily be done in the following way. Since the off-diagon
terms start off likeAt, checking the quartic terms is enoug
and one can stop the expansion of the off-diagonal block
At order. To that order, the two blocksG0i B8 and Gi0 B

4This would not be the case if the least economical modificat
was chosen~the one that cuts the cluster off the rest of the lattic!.
The B matrix would not have all row sums equal to zero, a
consequently the off-diagonal Green functions would have nonz
terms of order 0 int. This would force us to expand everything t
order 2 ~instead of 3/2! in t. So these modifications appear to b
doubly inefficient.
0-5
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STÉPHANE MAHIEU AND PHILIPPE RUELLE PHYSICAL REVIEW E64 066130
have all their rows identical. Indeed, inside a given colum
all entries are finite differences of Green functions evalua
at neighboring sites, and so differ by second order finite
ferences of Green functions, i.e., by terms of ordert. Thus
the determinant withG0i B8 and Gi0 B as off-diagonal
blocks can be reduced to a determinant where the two
diagonal blocks have but their first row nonzero, and equa
bi
de

t
n
th

a

ld
n

rin

ti
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linear combinations of Green functions. Such a determin
has no term that is quartic in the off-diagonal block entrie

To end this section, we give the expansion analogou
Eq. ~3.4! that pertains to the calculation of three-cluster c
relations. Its proof relies on the same arguments as ab
regarding permutations. For three clusters rooted at s
i , j ,k, it reads
Prob@S~ i !, S8~ j !, S9~k!#

522 Prob~S!Prob~S8!Prob~S9!1Prob~S!Prob@S8~ j !,S9~k!#1Prob~S8!Prob@S~ i !,S9~k!#

1Prob~S9!Prob@S~ i !,S8~ j !#1Tr$@Mi ~I1Gii B!# t~Gi j B8!@Mi ~I1Gj j B8!# t~GjkB9!

3@Mi ~I1GkkB9!# t~GkiB!%1Tr$@Mi ~I1Gii B!# t~GikB9!@Mi ~I1GkkB9!# t~Gk jB8!@Mi ~I1Gj j B8!# t~Gji B!%1•••.

~3.5!
-

ed

t-
This formula gives all terms of the determinant that are cu
in the off-diagonal Green functions. They are to be expan
aroundt50 as discussed above.

IV. UNIT HEIGHT VARIABLES

The simplest cluster variable isS0, namely, the unit heigh
variable. We give in this section its multisite correlatio
functions, in various configurations, as computed along
lines exposed above.

The one-point function, namely, the probability that
fixed site has height equal to 1, poses no problem~and is in
any case of little interest for the comparison with a fie
theory!. Making everything very explicit for once, it is give
by

Prob~S0![P~1!

5detS I1S G~0,0! G~1,0! G~1,0! G~1,0!

G~1,0! G~0,0! G~1,1! G~2,0!

G~1,0! G~1,1! G~0,0! G~1,1!

G~1,0! G~2,0! G~1,1! G~0,0!

D
3S 12x 1 1 1

1 21 0 0

1 0 21 0

1 0 0 21

D D . ~4.1!

HereG(m,n) is (D21) i ,0 for the sitei 5(m,n), and we have
used the symmetries of the Green function. The site orde
is O, N, E, and S.

This can easily be computed in terms of complete ellip
functions ~see Appendix A!, although the result is not par
ticularly transparent:
c
d

e

g

c

P~1!5
1

256
@~x24!G~0,0!21#@x2G~0,0!216G~1,1!

2~x14!#@~x228!G~0,0!28G~1,1!2~x24!#2.

~4.2!

It goes to 2@2G(1,1)22G(0,0)11#@G(1,1)2G(0,0)#2

52(p22)/p3 in the limit x→4.
More interesting is its graph, which shows that Prob(S0)

increases whenx goes away from 4 before falling off alge
braically whenx keeps growing. The graph of Prob(S0) as a
function of x is reproduced in Fig. 2 as the long-dash
curve.

A. Two-point correlation

The joint probability for having a 1 at theorigin, say, and
another 1 at a sitei is equal to the 838 determinant

FIG. 2. Unnormalized probabilities of the clustersS0 up toS4 as
functions of the perturbing parameterx. In this figure, all probabili-
ties have been normalized to 1 atx54 to prevent some of them
from melting into the horizontal axis. The curves from top to bo
tom refer toS0 ~long dashes! down toS4 ~shortest dashes!. The two
solid lines correspond toS2 andS3.
0-6
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Prob@h05hi51#5detS I1G00B G0i B

Gi0 B I1Gii BD , ~4.3!

where B is the matrix used in Eq.~4.1!. Because the two
clusters are identical,Gii 5G00.

As mentioned earlier, the expansion of the Green funct
at arbitrary points tends to be complicated, so we have
stricted ourselves to configurations where the Green fu
tions close to a principal axis or a diagonal axis only a
required. For the two-site correlation, this leaves only
two possibilitiesi 5(m,0) andi 5(m,m). Using the formula
~3.4!, we found the same answer in both cases:

Prob@h05hi51#2@P~1!#252t2@P~1!#2H 1

2
K09

2~Atu i u!

2
1

2
K0~Atu i u!K09~Atu i u!1

1

2p
K08

2~Atu i u!

1
11p2

4p2 K0
2~Atu i u!J 1•••, ~4.4!

with u i u5m or A2m depending on whetheri is real or on the
diagonal. The functionK0 is the modified Bessel function
Note that theP(1) appearing in the left-hand side~LHS! ~in
the subtraction term! is the off-critical probability, while that
in the ~RHS! can be taken to be the critical one.

This formula has a number of instructive and comforti
features. The spatial dependence is only through the func
K0, that is, the scaling form of the massive lattice Gre
function. The other functions, denotedDi or Pi in Appendix
A, and representing the lattice corrections to the scaled, c
tinuum Green function, actually do not enter. Moreover,
fact that the answer is the same for the two positions oi
suggests that the probability is invariant under rotations
agreement with the rotational invariance of the clusterS0
itself. This is related to the first point, since the functio
Di .0 and Pi .0 represent anisotropic terms in the latti
Green function.

Another reassuring feature is that the correlation~4.4!
scales liket2, to the dominant order, and that all logarithm
terms logt have dropped out at that order. This requires m
sive cancellations because logarithmic terms occur in all
06613
n
e-
c-
e
e

on
n

n-
e

n

-
n-

tries of the blocksG00 andGii , which store Green function
values around the origin~see Appendix A!. We have also
checked that Eq.~4.4! is exact up to higher order int: all
terms of order lower thant2 vanish identically@apart from
the zeroth order termP(1)2#, and there are no terms quart
or higher in the Green function that contribute at2 term.
Thus Eq.~4.4! is exact to ordert2.

That the correlation scales like the fourth power of t
mass was expected since the critical correlation decays
u i u24 @8#. It is easily recovered from Eq.~4.4! by taking the
limit t→0, in which the term inK09

2(u i uAt);1/t2u i u4 is the
only one to survive, reproducing the result~2.1!.

What the above suggests is that the scaled unit he
variable goes over, in the scaling limit, to a massive fieldf0
with scale dimension 2,

lim
a→0

1

a2
@d~hz/a21!2P~1!#5f0~z!, i 5

z
a

→`,

t5a2M2→0 with iAt5Mz, ~4.5!

and whose two-point function reads

^f0~0!f0~z!&52M4@P~1!#2H 1

2
K09

2~M uzu!

2
1

2
K0~M uzu!K09~M uzu!1

1

2p
K08

2~M uzu!

1
11p2

4p2 K0
2~M uzu!J . ~4.6!

B. Three-point correlation

We made the same calculations for the three-site proba
ity, using the formula~3.5!. The use of the Green function
on the horizontal or the diagonal axis leaves essentially
possibilities: either the three insertion pointsi, j, and k are
aligned, or else they form an isoceles right triangle. In b
cases, the probabilities scale liket3, with all logarithms oft
canceled out. The explicit results, however, differ in the
two cases.

When they form a linear arrangement, be it on the ho
zontal or diagonal axis, the result for the connected proba
ity ~i.e., products of lower correlations are subtracted! reads
Prob@hi5hj5hk51#aligned, connected5
M6

4
@P~1!#3H @K0~12!2K09~12!#@K0~13!2K09~13!#@K0~23!2K09~23!#

1K09~12!K09~13!K09~23!1
1

p
@K09~12!K08~13!K08~23!2K08~12!K09~13!K08~23!1K08~12!K08~13!K09~23!#

2
1

p2 @K0~12!K08~13!K08~23!2K08~12!K0~13!K08~23!1K08~12!K08~13!K0~23!#2
1

p3K0~12!K0~13!K0~23!J .

~4.7!

We have written the answer in the scaled form, that is, after the scaling limit in which the sitesi , j ,k go over to the
macroscopic positionsz1 ,z2, andz3. The notationK0( i j ) stands forK0(M uzi2zj u).

For the triangular configuration, we chose the insertion pointsi 5(0,0) andk5(2m,0) to be real, and putj 5(m,m) on the
diagonal. The result is slightly different in this case, and reads, in the same notation,
0-7
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Prob@hi5hj5hk51# triangular, connected

52
M6

4
@P~1!#3H 2 K09~12!K0~13!K09~23!2K09~12!K0~13!K0~23!2K0~12!K0~13!K09~23!

1
1

p
@A2@K09~12!2K0~12!#K08~13!K08~23!1A2K08~12!K08~13!@K09~23!2K0~23!#

1K08~12!@2 K09~13!2K0~13!#K08~23!#1
A2

p2 @K08~12!K08~13!K0~23!2K0~12!K08~13!K08~23!#

1
2

p3 K0~12!K0~13!K0~23!J . ~4.8!
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Exactly the same result was found, as expected, for the
tated configuration wherei is at the origin,j 5(m,0) on the
real axis, andk5(m,m) on the diagonal.

The same comments as for the two-site correlation ap
here but for one point. If indeed the three-site probabi
scaling;t3 around the critical point is consistent with th
dimension 2 of a unit height variable, one observes that
probabilities themselves vanish in the critical limit (M→0).
Thus the scaling limit of three unit height variables in t
usual, unperturbed, ASM vanishes:

lim
scaling

Prob@hi5hj5hk51#x54,connected50. ~4.9!

We have checked this result by using the critical Green fu
tions, and found that the probability for three sites align
along the real axis,

Prob@hi5hj5hk51# real, connected

52
P~1!2

p3 F 1

z12
3 z23

3 z13
2

2
1

z12
3 z23

2 z13
3

2
1

z12
2 z23

3 z13
3 G

1
P~1!3

8 F 1

z12
4 z23

4
1

1

z12
4 z13

4
1

1

z23
4 z13

4 G
1

3P~1!3

4 F 1

z12
4 z23

2 z13
2

1
1

z12
2 z23

4 z13
2

1
1

z12
2 z23

2 z13
4 G

1~higher order!, ~4.10!

indeed, decays like a global power28 of the separation
distances. Moreover, the same calculation for the three s
aligned on the diagonal axis produces different coefficie
Thus the dominant term of the critical lattice three-po
function is not isotropic, contradicting the expected ro
tional invariance, and so should not survive the scaling lim

C. Four-point correlation

Finally, we have also determined the four-site probabi
for unit height variables, at the critical point only, as othe
06613
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e
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s.
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wise the number of terms grows quickly. So in this case
have used throughout the calculations the expansion
x54 of the Green functions, also given in Appendix A.

We have examined two different arrangements of the
sertion points, when they are all aligned on the real axis,
when they lie at the vertices of a square. When they are
aligned on the real axis, the connected four-site probab
takes a very simple form, at the dominant order,

Prob@hi5hj5hk5hl51# real
connected

52
P~1!4

4 H 1

~z12z34z13z24!
2

1
1

~z13z24z14z23!
2

1
1

~z14z23z12z34!
2J 1••• , ~4.11!

where the ellipsis represents terms of global power sma
than or equal to210 ~they disappear in the scaling limit!,
and z135 i 2k, . . . ~real!. The other case, for whichi
5(0,0), j 5(m,0), k5(0,m), andl 5(m,m) are the vertices
of a square of side lengthm, is much more rigid as it depend
on a single distancem. The result we found for this situation
is

Prob@hi5hj5hk5hl51# square
connected

52
3

8

@P~1!#4

m8 1•••.

~4.12!

Before presenting the results for the other cluster variable
Fig. 1, we examine the above correlations for the unit hei
random variable from the point of view of the conform
field theory that is the most natural candidate, namely,
c522 theory, and its massive extension.

V. CONFORMAL FIELD THEORY

Thec522 conformal field theory was studied first in th
context of polymers@18#, and a bit later served as the sim
0-8
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plest example of a logarithmic conformal field theory@19#.
Since then it has been extensively examined by many aut
@20–26#. Reference@24# in particular presents a clear an
rather complete account of the structure of thec522 theory
as a rational conformal field theory. Even if it is consider
as the simplest situation where logarithms can occur, it c
tains many subtle aspects and probably possesses man
ferent and inequivalent realizations. The one that is relev
here is perhaps the most natural one.

The underlying field theory is formulated in terms of
pair of free Grassmanian scalarsua5(u,ū) with action

S5
1

2pE «ab]ua]̄ub5
1

pE ]u ]̄ū, ~5.1!

where« is the canonical symplectic form,e12511.
The zero modes ofu,ū, call them j and j̄, have been

much discussed. Because the action does not depen
them, the expectation value of anything that does not con
u and ū explicitly, but only their derivatives, vanishes ide
tically. In particular, the partition function itself vanishes,
the correlation functions are normalized byZ8

5*Du8Dū8 e2S, where the primed fields exclude the ze
modes j and j̄. This normalization implies, for instanc
(eab52eab),

^1&50, ^j̄j&51, ~5.2!

^ua~z!ub~w!&5eab, ^ua~z!ub~w!j̄j&5eab loguz2wu,
~5.3!

^]ua~z!]ub~w!&50, ^]ua~z!]ub~w!j̄j&5
eab

2~z2w!2
,

~5.4!

^ua~z1!ub~z2!ug~z3!ud~z4!&

5eabegd loguz12z34u2eagebd loguz13z24u

1eadebg loguz14z23u. ~5.5!

As far as derivatives of fields are concerned—as will be
case in the ASM, at least at the conformal point—one c
insert the two zero modes in the correlators, as in Eq.~5.4!,
to take care of the integral over constant fields. The fu
tional integral over nonconstant fields then yields the us
form for the correlators, obtained from Wick’s theorem a
the kernel of the Laplacian. Equivalently, one can define
functional integral for derivative fields by keeping the ze
modes out, or consider the so-calledh –j system@18#.

The stress-energy tensor componentsT52:]u ]ū: and
T̄52:]̄u ]̄ū: have operator product expansions~OPEs! char-
06613
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acteristic of a conformal theory with central chargec522.

The fieldsu and ū are primary fields with conformal dimen

sions ~0,0!, while the bosonic composite field :uū: has the
following OPE withT:

T~z!:uū:~w!5
21

2~z2w!2 1
]:uū:~w!

z2w
1•••. ~5.6!

It shows that the conformal transformation of :uū: does not
close on itself~and its descendants! but also involves the
identity and its descendants, which form a conformal mod

on their own. Thus the identity and :uū: generate a Virasoro
module, which is reducible but not fully reducible. This is
characteristic feature of logarithmic conformal theories@19#.

The field :uū: is called the logarithmic partner of the iden
tity. It is neither a primary field nor a descendant~see below
for a field that is primary and descendant without being nu!.

The fact that there are two fields with zero scaling dime
sion is the main source of unusual features~and confusing
subtleties!, one of them being the existence of two degen

ate vacuau0& and ujj̄& ~there are two more of fermionic

nature,uj& and u j̄&). The above prescription about the inse
tion of the zero modes can be viewed in the operator form
ism as the taking of operator matrix elements between
distinct ingoing and outgoing vacua.

In conclusion, the theory specified by the action~5.1! is a
logarithmic conformal theory with central chargec522. It
contains a nonlogarithmic local sector, which retains the c
tral charge valuec522, and in which derivative fields only
are considered. Anticipating the analysis to be given bel
our results suggest that the ASM scaling fields related
height variables lie precisely in thisc522 nonlogarithmic
conformal theory.

It should also be noted that either theory, logarithmic
nonlogarithmic, contains additional nonlocal~twisted! sec-
tors. Although they could play an important role in the san
pile models, for the description of other lattice variables th
heights, we will not discuss them here, and refer to@24# for
further details.

We will also need the off-critical, massive extension
the above conformal theory. It corresponds to a perturba
by the logarithmic partner of the identity

S~M !5
1

pE :]u ]̄ū:1
M2

4
:uū:. ~5.7!

The zero mode problem no longer arises in the mass
theory, so that one can normalize the correlation functions
0-9



c

od
m
th
g

r
u
e
rit
-
ry

e
n

or
g-
eld
lar
e

f
ed
c-
at,

-
e-

x-

d

ic
d
ne
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the full partition functionZ(M )5*DuDū e2S(M ). One then
obtains

^u~z!ū~w!&5K0~M uz2wu!,
~5.8!

^u~z!u~w!&5^ū~z!ū~w!&50,

and, for instance,

^]u~z!]ū~0!&52
M2

4

z̄

z
@2K09~M uzu!2K0~M uzu!#.

~5.9!

On account ofK0(x);2 logx for small arguments, the
massless limit of the previous equation exists and reprodu
the expression given in Eq.~5.4! with the zero modes in-
serted. This is expected since the effect of the zero m
insertion is formally to change the normalization factor fro
Z8 to Z. On the other hand, the same does not apply to
correlations of the fieldsua themselves, as the normalizin
functionalZ(M ) goes to zero asM→0.

As mentioned above, the cluster variables we conside
this article are all related to derivative fields. The previo
remark then implies that the off-critical ASM multi-sit
probabilities have a smooth massless limit, equal to the c
cal probabilities. The scaling form of the off-critical prob
abilities will be related to the above massive free theo
e
-
th
E

06613
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e
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,

while the critical ones will be computable in terms of th
nonlogarithmic conformal field theory using the insertio
prescription.

VI. SCALING FIELDS FOR CLUSTER VARIABLES

Let us now reconsider the multisite probabilities f
height 1 computed in Sec. IV. The two-site probability su
gested that the unit height variable is described by a fi
with scaling dimension 2, which should in addition be sca
since a unit height variable is rotationally invariant. If on
assumes that this field is local inu,ū, the only possibilities
are :]ua ]̄ub:, :uū ]ua ]̄ub:, andM2:uū:. The second set o
fields :uū ]ua ]̄ub: must be excluded, because, as explain
above, they would produce logarithms in correlation fun
tions, contradicting the observation we made in Sec. II th
in the massless sandpile model (x54), the multisite prob-
abilities are never logarithmic~at least those one can com
pute from the Majumdar-Dhar technique, i.e., from finite d
terminants!.

It is not difficult to see that

f052P~1!F :]u]̄ū1 ]̄u]ū:1
M2

2p
:uū: G ~6.1!

is indeed the right combination: its two-point function is e
actly the form given in Eq.~4.6!, which was obtained by
taking the scaling limit of the two-site probability compute
on the lattice.

In order to confirm this identification, the field-theoret
three-point function off0 can be computed and compare
with the lattice result. In the same notation as in Sec. IV, o
finds for an arbitrary arrangement of the insertion points
^f0~z1!f0~z2!f0~z3!&52
M6

16
3H 1

2 S z13z̄23

z̄13z23

1c.c.D K0~12!@2K09~13!2K0~13!#@2K09~23!2K0~23!#1perm

1
p22

p2 F S z13z̄23

uz13uuz23u
1c.c.DK0~12!K08~13!K08~23!1permG1

1

p F S z12
2 z̄13z̄23

uz12u2uz13uuz23u
D

3@2K09~12!2K0~12!#K08~13!K08~23!1permG1
p324

p3 K0~12!K0~13!K0~23!J , ~6.2!
a

n-
ess
where the permutations that must be added are the two
changesz1↔z3 andz2↔z3. One easily checks that it repro
duces the three-site probabilities reported in Sec. IV for
two arrangements examined there. The massless limit of
~6.2! vanishes, as clearly follows from Eq.~6.1! for M50,
x-

e
q.

since the three-point function will necessarily involve

Wick contraction of a]ua with some]̄ub.
Finally, the four-point function can be compared. For co

venience, we give the field-theoretic result in the massl
regime:
0-10
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^f0~z1!f0~z2!f0~z3!f0~z4!&M50

5
P~1!4

4uz12u4uz34u4
1

P~1!4

4uz13u4uz24u4
1

P~1!4

4uz14u4uz23u4

2
P~1!4

8 H 1

~z12z34z̄13z̄24!
2

1
1

~z13z24z̄14z̄23!
2

1
1

~z14z23z̄12z̄34!
2

1c.c.J , ~6.3!

where only the last term within the curly brackets represe
the connected part of the four-point function. When the fo
insertions lie on the real axis, it clearly reproduces the lat
result ~4.11!, and when they are the vertices of a square
sidem, z150,z25m,z35 im,z45(11 i )m, it reduces to

^f0~z1!f0~z2!f0~z3!f0~z4!&M50,square,connected

52
3

8

@P~1!#4

m8 , ~6.4!

and again matches the connected four-site probability~4.12!.
We believe these comparisons provide enough evide

to assert that the unit height random variable of the sand
model goes over, in the scaling limit, to the fieldf0 defined
in Eq. ~6.1!. In the conformal limit, f0;:]u]̄ū1 ]̄u]ū:
5]]̄:uū: is a primary field with conformal dimensions~1,1!,
but is also a descendant of :uū:.

The rest of this section presents analogous results for
other cluster variables pictured in Fig. 1.

We have repeated, for the other 13 clusters in Fig. 1,
same calculations we performed for the unit height variab
More precisely, for each of the cluster variablesS1 up to
S13, we have computed its joint probability with a un
height, namely, Prob@S0(0),Sk( i )#, with i on the principal
and on the diagonal axis. From these two probabilities
can write down an ansatz for the fieldfk with which the
clusterSk gets identified in the scaling limit. These identifi
cations were subsequently checked to reproduce all two
probabilities Prob@Sk(0),Sl ( i )#, for all pairs k,l
50,1,2, . . . ,13, on both the principal and the diagonal ax
In addition, at least one rotated~or mirrored! version of each
cluster has been examined, although not systematically~only
the correlation withS0 on both axes!. The results we found
for the rotated clusters are in agreement with the rotation
the fields assigned to the unrotated clusters, so that the
of the rotated cluster is the rotated field. Finally, mix
three-cluster probabilities involving unit heights andS1 clus-
ters have also been computed. They all confirmed the fi
identifications.

All calculations have been performed exactly, i.e., not n
merically. The two-cluster probabilities take a form simil
to Eq. ~4.4!, where the coefficients are in general comp
cated rational expressions ofp. Keeping these coefficients i
an exact form allows the check of the field identifications
be made in an exact way. For simplicity, however, the res
presented below are given numerically.
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The features of the two-cluster probabilities are the sa
as for the unit height variables. We found that all of the
scale liket2, with all logarithmic singularities canceled ou
This implies that all cluster variables go in the scaling lim
to fields with scaling dimension 2:

lim
a→0

1

a2 @d„S~ i !…2P~S!#5fS~z!, i 5
z

a
→`,

t[x245a2M2→0 with iAt5Mz. ~6.5!

This is somewhat surprising as one might have expected
dimension of the scaling fields to increase with increas
size of the clusters.

All cluster variables we have considered have a sca
limit that corresponds to a field of the following form:

f~z!52H A:]u]̄ū1 ]̄u]ū:1B1:]u]ū1 ]̄u]̄ū:1 iB2 :]u]ū

2 ]̄u]̄ū:1C P~S!
M2

2p
:uū:J . ~6.6!

The ~real! coefficientsA, B1 , B2, andC are given in Table I
for each cluster. The factorP(S) in front of the term :uū: is
the probability ofS evaluated atx54. Note that the field is
not invariant under a rotation ofp/2 as soon asB1 or B2 is
nonzero, but is invariant under a rotation ofp no matter
what the coefficients are. So, in particular, the scaling lim
of the cluster variables does not in general yield conform
fields, but sums of pieces with different tensor structures

As far as numerical values are concerned, the last colu
of the table is particularly striking: all entries are intege
simply equal to the size of the cluster. This makes the co
ficient of the :uū: terms particularly simple and apparent
regular. The reason for this is unclear.

The other numbers mentioned in the table are not in the
selves particularly interesting. As mentioned above, all th
numbers are complicated expressions. For instance, the
three numbers on the line corresponding toS9 ~the last clus-
ter of size 4! are in fact equal to

Prob~S9!5
2 621 440

27p7
2

21 389 312

81p6
1

24 279 040

81p5

2
14 968 672

81p4
1

1 809 776

27p3
2

258 037

18p2
1

10 061

6 p

2
663

8
, ~6.7!

A5S 3p28

p2 D S 655 360

27p5
2

3 389 440

81p4
1

2 259 952

81p3
2

81 566

9 p2

1
5765

4 p
2

8647

96 D , ~6.8!
0-11
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TABLE I. For each cluster in Fig. 1, the table gives the valu
of the parametersA, B1, B2, andC specifying the field that de-
scribes the scaling behavior of the given cluster@see Eq.~6.6!#.
Note in particular that the coefficientC is equal to the size of the
cluster.
th
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ape
B15S 3p28

p2 D S 305 152

81p4
2

359 056

81p3
1

17 554

9p2
2

13 693

36p

1
2663

96 D . ~6.9!

A gross feature of Table I is that the~nonzero! numbers are
roughly constant for all clusters of the same size, namely,
probabilities and the coefficients do not change much w
the shape of the clusters, but depend essentially on their
only. Roughly speaking, these numbers~exceptC) get di-
vided by 10 when the size increases by 1.

The zeros in the table or the equality~up to signs! of
coefficients can be understood from the transformations
the clusters and the corresponding fields under the symm
06613
e
h
ize
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group of the lattice. One easily sees that the fieldf in Eq.
~6.6! changes under rotations and reflections according to
following rules:

~A,B1 ,B2 ,C!

→H ~A,2B1 ,2B2 ,C! under a p/2 rotation,

~A,B1 ,2B2 ,C! under anx or y reflection.

~6.10!

By convention, all clusters are assumed to be anchore
their lower left site. The rotations are performed about
axis passing through that site.

First of all, the only one to haveB15B250 is the unit
height. Indeed, it is the only cluster that preserves its sh
0-12
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SCALING FIELDS IN THE TWO-DIMENSIONAL . . . PHYSICAL REVIEW E 64 066130
under rotations and reflections, and so one can expect
corresponding field to be a scalar under~continuous! rota-
tions and reflections.

There are clusters whose fields haveB250, and they are
precisely those clusters that are invariant under a reflec
through the horizontal axis. The same can be said of
rotated clusters for a reflection through the vertical axis. T
S9 has a coefficientB250 can be understood along the sam
lines, although it is not manifestly invariant under refle
tions. Anx reflection ofS9 followed by a rotation byp and
a translation of two lattice sites brings it to itself, except th
a height 2 and a height 1 have been swapped. However
assignment of heights within a cluster is irrelevant in t
actual computation: the modified ASM is defined in terms
certain bonds being removed. Since each site whose heig
being constrained loses three out of its four bonds, the ac
height assignment is irrelevant. In effect, the setMS that
includes all the sites affected by the modifications and
modification matrixB itself can be chosen~have been cho-
sen! invariant under ay reflection.

In the same way, one sees thatS5 and S7 have equal
coefficients, up to signs. As represented in Table I and Fig
they are related by a rotation ofp/2 and anx reflection, with
the consequence that theirB1 coefficients are opposite bu
theB2 are equal. The same can be said ofS8 andS9, with the
same remark as above regarding the locations of the he
values within the clusters.

From these remarks, one easily finds the fields co
sponding to different orientations of a cluster. The clusterS6,
for instance, comes in eight different orientations~all an-
chored to the same site!. All of them have the same coeffi
cient A;0.000 695 941 andC54, whereas pairs of cluster
have coefficients (B1 ,B2), or (2B1 ,B2), or (B1 ,2B2), or
(2B1 ,2B2). As a consequence, the sum over the cor
sponding eight fields reduces to a projection onto the sc
part, and involves theA andC terms only.

In a sense, the fact that the fields reflect so well the g
metric symmetries of the clusters is surprising. As discus
at length in Sec. II, the actual calculations are based on
equate modifications of the original ASM on a set we cal
MS , which contains not only sites belonging to the clus
itself, but also sites in its close neighborhood. Thus e
cluster drags with itself an invisible shadow, made of t
sites in the setMS\S. The shadow is a computational artifac
but is nevertheless crucial. Moreover, it usually breaks
alters the geometric symmetries of the cluster it goes w
The insertion of a height 1, for instance, somewhere in
lattice, really requires us to consider a four-cluster pictu
in Sec. II. Here the shadow consists of three neighbors of
central site, and clearly breaks the rotational invariance.

We will conclude this section by observing that the heig
h variables, forh bigger than 4, can be handled in the ma
sive ASM exactly like the unit height variables, even mo
simply. The reason is that a height equal to 5,6, . . . ,x can
never be in a forbidden subconfiguration, so that the se
recurrent configurations containing a height equal toh.4 at
some sitei is equal to the set of recurrent configurations
the lattice with i removed. Therefore the modification
needed to freeze the height of a site toh.4 must simply
06613
he

n
e
t

-

t
he

f
t is
al

e

1,

ht

-

-
ar

o-
d
d-
d
r
h

e

r
.
e
d
e

t
-

of

reduce the threshold at that site to 1, and cut it off from
rest of the lattice. This can be implemented by the followi
matrix:

B5S 12x 1 1 1 1

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

D . ~6.11!

The corresponding probability is simply given by Prob@hi
5h.4#5G(0,0), and is logarithmically divergent atx54.
For that reason, one considers instead the probability thahi
exceeds 4:

Prob@hi.4#5~x24!G~0,0!5
2~x24!

px
KS 4

xD ,

~6.12!

which goes to 0 whenx→4. ~The matrixB corresponding to
this has24 as the first diagonal entry, rather than 12x.! K
is a complete elliptic function~see Appendix A!.

As for the above clusters, one can compute the corr
tions of this random variabled(hi.4) with itself or with the
other clusters, and see what field-theoretic description it
in the scaling limit. Again, the result is simple. The lattic
calculation of its own correlation yields

Prob@h0.4,hi.4#2Prob@h0.4#252
t2

4p2K0
2~Atu i u!1¯ ,

~6.13!

which suggests the scaling limit

d~hi.4!2^d~hi.4!& ——→
scaling

f5
M2

2p :uū:. ~6.14!

Correlations with the other cluster variables confirm th
limit. It nicely fits the expectation that the field should vani
at the critical point.

VII. THE HEIGHT 2 VARIABLE

We have so far focused on the class of weakly allow
cluster variables, whose correlations can be handled by
technique developed in@8#, and in turn computed from a
finite determinant. The authors point out in that article th
non weakly allowed cluster variables can in fact be view
as infinite series of weakly allowed clusters. It dramatica
complicates their treatment, since a correlation involving
single non weakly allowed cluster requires the computat
of an infinite number of correlations of weakly allowed clu
ters, of finite but unbounded size.

In this section, we address the question of the field ass
ment for the height 2 variable, in the light of the results
the previous sections. We will consider the height 2 variab
both from the perturbative point of view that we have ju
summarized, and from the conformal point of view.

That a height 2 variable can be treated as an infinite s
0-13
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of weakly allowed cluster variables can be seen as follo
@8#. Consider the set of recurrent configurationsC with a
height 2, at the origin say. That set can be divided up i
two disjoint subsets according to whether the configurati
remain recurrent when the 2 is replaced by a 1, or beco
transient upon that replacement.

The number of those that remain recurrent is the sam
the number of recurrent configurations that have a height
the origin, because, vice versa, a recurrent configuration w
a 1 remains recurrent if the 1 is replaced by a 2. So
contribution toP(2)[Prob@h052# from this first subset is
exactly equal toP(1).

For those configurations that become transient, it mus
that the 2 belongs to a weakly allowed cluster. This wea
allowed cluster can be of various sizes and shapes, a
straight enumeration according to their size leads directly
the clusters of Fig. 1~except the first one and the last tw!
and their various orientations. In this way, the second su
is itself divided into an infinite number of disjoint subse
according to which weakly allowed clusterS the height 2 at
the origin is part of. The subset labeled byS ~fixed size,
shape, and orientation! contributes toP(2) a term equal to
P(S).

Putting all together, one obtains, observing that the nu
ber P(S) does not depend on the orientation ofS, the for-
mula

P~2!5P~1!1 (
w.a.c. S

P~S!5P~1!14P~S1!14P~S2!

18P~S3!14P~S4!18P~S5!1••• ~7.1!

where the summation is over the weakly allowed clust
which are ‘‘anchored’’ to a height 2. As pointed out in@8#,
the convergence is very slow. From Table I, the terms up
S9 furnish the lower boundP(2)>0.13855, well below the
exact valueP(2);0.1739@12#.

The argument recalled above leading to the perturba
formula for P(2) works similarly for any correlation. The
result can be expressed as an identity between random
ables,

d~hi22!5d~hi21!1 (
w.a.c. S

d„S~ i !…. ~7.2!

Modulo the issue of convergence, this identity is valid wh
inserted in expectation values.

The results of the previous section suggest that all rand
variables on the RHS have the same scaling form, given
the field in Eq.~6.6!. Assuming this at all orders and takin
the scaling limit of the previous identity lead to a scali
field for height 2 of the same form as the scaling field
height 1, namely,

d~hi22! ——→
scaling

a:]u]̄ū1 ]̄u]ū:1b M2:uū:. ~7.3!

This follows from the observation we made earlier that
other terms]u]ū6 ]̄u]̄ū change sign under a rotation b
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p/2. The sum over the orientations of a cluster makes th
terms cancel against each other, leaving a scalar field,
should be.

The natural conclusion one might draw from this is th
at the critical point, the heights 1 and 2 scale in the same w
and in fact go over, in the scaling limit, to the same—up
normalization—primary field of conformal dimensions~1,1!.
This is direct though tenuous evidence in favor of such
statement, which was in fact made in@11#, based on an ex-
trapolation to the bulk of a similar statement on the cor
sponding boundary variables, itself relying on the bound
two-point functions. As plausible and likely as it may be, t
extrapolation remains uncontrolled, as there are well-kno
examples of lattice observables that go to different fiel
depending on whether they lie on a boundary or in the bu
Thus neither argument is convincing, but both point to t
same field assignment for the height 2 variable~and probably
similarly for heights 3 and 4!.

This seems reasonable and likely. It is therefore surpris
to observe that it does not appear to be consistent wit
naive interpretation of the operator product expansions.
simplify, we consider the critical point, and the correspon
ing conformal field theory.

The two lattice variables, a height 1 and a height 2, can
taken far apart and subsequently brought closer to each o
until they occupy neighboring sites, thus forming the clus
variable we calledS1. In the field-theoretic picture, this
amounts to taking the two corresponding fields closer a
closer to each other, until they become coincident, at wh
point they form a new composite field. The informatio
about what composite fields a pair of fields can form wh
they come close to each other and are asymptotically coi
dent is contained in their operator product expansion.

:]u]̄ū1 ]̄u]ū:~z!:]u]̄ū1 ]̄u]ū:~w!

52
1

2uz2wu4
1

: ]̄u]̄ū:~w!

~z2w!2
1

:]u]ū:~w!

~ z̄2w̄!2

1~ less singular!, ~7.4!
0-14
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Note that for exactly the same reasons one could ques
the field assignment of the height 1 variable itself, despite
fact that the fieldf0 has successfully passed so many te
Although one cannot bring two heights 1 side by side, o
can bring them fairly close to each other, as in the last t
clusters of Fig. 1~or Table I!, in fact close enough so as no
to lose the OPE argument. But then the fields associated
the two clustersS12 andS13 must be contained in the fusio
of two heights 1, i.e., in the fusion~7.4!, which we know is
not the case.

Perhaps sandpile models are so special that one sh
reject the fusion altogether, on the basis that height varia
have hair, because a particular height imposes restriction
what can stand close to it. For example, a height 1 forces
its neighbors to be higher than or equal to 2, and a heig
does not allow two of its neighbors to have a height 1. T
might explain the inconsistency noticed above, but at
same time it denies the very possibility of a field assignme
We believe that this issue should be clarified.

VIII. CONCLUSION

The power of conformal field theory could bring a mu
better understanding of the sandpile model, if some of
observables could be identified with conformal fields. This
a nontrivial task even for the height variables, which a
probably the easiest variables to account for in a fie
theoretic setting. In addition, and in order to strengthen
connection with a field theory, the neighborhood of the cr
cal point should be investigated. In this article, we ha
taken the first steps toward a systematic study of this r
tionship, at and off criticality.

The off-critical extension of the sandpile that we cons
ered is defined by allowing dissipation, i.e., loss of sand e
time a site topples. The dissipation rate is controlled b
parametert>0 and corresponds to a relevant perturbation
the usual Abelian undirected sandpile model.

We have examined multisite probabilities for the simpl
local cluster variables in the off-critical sandpile model. B
explicit calculations, we have shown that their scaling fo
can be fully reproduced by a free field theory of mass
Grassmanian scalars. In the massless, critical limit,
theory is a logarithmic conformal field theory with centr
chargec522. The local fields assigned to the various clu
ter variables, however, all belong to a nonlogarithm
bosonic sector. The massive regime, with a massM;At
directly related to the perturbing parameter, corresponds
thermal perturbation of the conformal theory, i.e., a m
term specified by a logarithmic field.

We have determined the field assignment for the 14 c
ter variables pictured in Fig. 1, and checked their consiste
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against the correlation functions. On the other hand, at
critical point, we have noted a disagreement between th
assignments and the naive fusion rules of the confor
theory.

We do not claim that all features of the sandpile mod
will be comprehensible within a field theory, but some
them definitely are. In this respect, other issues than
height variables can be raised: boundary phenomena ag
boundary conformal field theory, the question of the modu
noninvariance on a torus~with leaking sites!, etc. Also, the
relevance and the role of logarithmic fields and twist fields
the c522 logarithmic conformal field theory must be fu
ther examined.
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APPENDIX A: GREEN FUNCTIONS

In this Appendix, we collect a number of expressions
have used for the computations of correlations in the sa
pile model.

The central object here is the Green functionG of the
massive discrete Laplacian onZ2, which is the solution of the
Poisson equationDG51, with D being the finite difference
operator given in Eq.~3.1!. The solution is easily obtained b
Fourier transform:

G~m,n!5G„~m8,n8!,~m1m8,n1n8!…

5E E
0

2p d2k

4p2

eik1m1 ik2n

x22 cosk122 cosk2
,

~m,n!,~m8,n8!PZ2. ~A1!

As explained in the text, values ofG are needed at points tha
are either close to the origin, or else very far from the orig
and in this last case we have restricted ourselves to po
close to a principal or a diagonal axis. We treat these th
cases in turn.

1. The Green function at points close to the origin

By using the invariance ofG under the reflection symme
tries of the lattice and its defining equationDG51, the
Green function can be given everywhere in terms of its v
ues on a diagonal. By a suitable change of variables and
integration@27#, the diagonal values can be recast into

G~m,m!5
~21!m

px E
0

p

dt
cos 2mt

A12~16/x2!sin2t
. ~A2!

This can be resolved in terms of the complete elliptic fun
tions @28#
0-15
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K~p!5E
0

p/2

dt
1

A12p2sin2t

5F11
q2

4
1

9q4

64
1•••G logS 4

qD2Fq2

4
1

21q4

128
1•••G ,

~A3!

E~p!5E
0

p/2

dtA12p2sin2t

5F12
q2

4
2

13q4

64
2•••G1Fq2

2
1

3q4

16
1•••G logS 4

qD ,

~A4!

whereq5A12p2, and where the expansions are given
p&1 close to 1.

In terms of our perturbing parametert5x24, one finds,
for instance,

G~0,0!5
2

px
KS 4

xD , ~A5!

G~1,1!5
1

4px H ~x228!KS 4

xD2x2 ES 4

xD J , ~A6!

G~2,2!5
1

24px H ~x4216x2148!KS 4

xD2x2~x228!ES 4

xD J ,

~A7!

G~3,3!5
1

120px H ~x6224x41158x22240!KS 4

xD
2x2~x4216x2146!ES 4

xD J , ~A8!

which can then be expanded aroundx54 by using Eqs.~A3!
and ~A4!. They all have the same logarithmic singularity
x54 as G(0,0), so that the differencesG(m,n)2G(0,0)
remain finite whenx→4. In particular, the critical limit of
the subtracted diagonal Green function is simply@27#

lim
x→4

@G~m,m!2G~0,0!#52
1

p (
k51

m
1

2k21
. ~A9!

2. The Green function on the far diagonal

For m large, the use of elliptic functions is impractical
extract the asymptotic behavior inm. Making the change of
variablesz5eit , the formula~A2! becomes an integral over
contour that can be deformed to enclose the cut lying
tween the two roots6u of the denominator, withu5x/4
2Ax2/1621. This yields

G~m,m!52
1

2pE2u

u

dz
z2m

A~z22u2!~z221/u2!
.

~A10!
06613
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The asymptotic expansion of this kind of integral was stu
ied in @29#, from which one finds, using their notation,

G~m,m!5A u

x~12u2!

1

A2pm
u2mH 11

Ã1.

8m
1

3

64

Ã2.2 5
6

m2

1
15

512

Ã3.2 7
6 Ã1.

m3
1•••J , ~A11!

where the coefficientsÃn. are defined from the generatin
function

Ã.~z!5
1

A@11~12u2!/~11u2!z#@11~11u2!/~12u2!z#

5 (
n50

`

Ãn.zn, ~A12!

and are thus themselves infinite~Laurent! series inu2, and
hence inAt5Ax24. It is not difficult to show that these
coefficients start off like

Ãn.5~21!n
~2n21!!!

~2n!!! S 2

t D
n/2

1O~ t2n/211!, ~A13!

with the consequence that them2n term in Eq.~A11! takes
the form

~2n21!!!

8n

Ãn.1•••

mn
5

~21!n

n! S ~2n21!!!

2n D 2

3
1

~2A2tm!n
@11~series int !#,

~A14!

that is, a first term that has the scaling form times correcti
in t, independent of the distancem.

By combining the previous expansion with that of th
prefactor of Eq.~A11!,

A u

x~12u2!

1

A2pm
u2m

5S 1

8pA2tm
D 1/2

e2mA2t1mA2t3/481•••@11~series int !#,

~A15!

one eventually finds that the Green function can be written

G~m,m!5$D0~mA2t !1t D2~mA2t !1t2 D4~mA2t !

1•••%emA2t3/481•••, ~A16!

where all functionsDi depend on the single scaling variab
mA2t ~the square root of 2 has to be included, since
0-16
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distance from the origin isA2m). Moreover, from Eq.~A14!,
the first functionD0 is explicitly given as

D0~z!5
1

A8pz
e2z(

n50

`
~21!n

n! S ~2n21!!!

2n D 2 1

~2z!n

5
1

2p
K0~z!, ~A17!

a modified Bessel function. This is to be expected and c
firms that the scaling limit of the Green function is inde
equal to(1/2p)K0(Mr ), the propagator of a massive scala

For calculations in the ASM model, one still needs t
Green functions at points close to the diagonal. The Pois
equation is not sufficient, because it would require
knowledge of the Green function all the way down to t
horizontal axis, but a simple ansatz similar to Eq.~A16!
leads to the following expressions, valid for 0<k!m:

G~m,m1k!5H D0~z!1k D08~z!A t

2
1FD2~z!1

k2

4
D0~z!G t

1F k

96
D0~z!1

k3

8
D08~z!2

k3

12
D0-~z!

1
k

2
D28~z!GA2t31•••J ezt/481•••, ~A18!

wherez5mA2t is the scaled distance. At the order where
the calculations have been performed, the terms shown in
previous expression are all that is needed.

The critical limit of the above expansions is more conv
niently computed from Eq.~A9! by using the asymptotic
expansion of thec function @28#, or from the integral~A2!.
The result is

lim
x→4

@G~m,m!2G~0,0!#52
1

2p
logm2

1

p S g

2
1 log 2D

2
1

48p m2 1
7

1920p m4

2
31

16 128p m6 1••• , ~A19!
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with g50.577 21 . . . theEuler constant.

3. The Green function on the far principal axis

The calculations can be repeated on a principal axis.
integration of Eq.~A1! over k2 followed by the change of
variablez5eik1 givesG(m,0) as a contour integral over th
unit circle. It can again be deformed to encircle the bran
cut joining the two rootsv,u of the denominator that lie
inside the unit circle, yielding

G~m,0!5
1

4pE0

2p

dk1

eik1m

A~x/22cosk1!221

5
1

ipEv

u

dz
zm

A~z2u!~z21/u!~z2v !~z21/v !
,

~A20!

with u,1 andv,1 the two roots ofz22(x22)z11 and
z22(x12)z11, respectively, that is,

u5
1

2
@x222Ax~x24!#, v5

1

2
@x122Ax~x14!#.

~A21!

The asymptotic behavior of this integral for largem can be
found again in@29#, with the result

G~m,0!5A u

4p~12u2!

um

Am
H 11

A1.

4m
1

3

16

A2.2 5
6

m2

1
15

64

A3.2 7
6 A1.

m3
1•••J . ~A22!

The series within the curly brackets is similar to that of t
previous subsection, with, however,m/2 substituted form,
and with the coefficientsAn. as defined in@29#, namely, by
A.~z!5
1

A@11~11uv !/~12uv !z#@12~11v/u!/~12v/u!z#@11~11u2!/~12u2!z#
5 (

n50

`

An.zn ~A23!
~the coefficientsÃn. used above correspond to the pres
An. upon the identificationv52u).

The usual expansion aroundx54 now yields
t G~m,0!5$P0~mAt !1t P2~mAt !1t2 P4~mAt !

1•••%emAt3/241•••, ~A24!
0-17



th

ls

in

f

se

el
its
re
co
il

be
on

t
n
ib

nd
ive
lic-

o-
To

e
l to
On

ive

u-
lt,

re-
ses
e

an
lled

he

mi-
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with P0(z)5(1/2p)K0(z) as before.
For points close to the horizontal axis, one finds from

Poisson equation the expansions fork!m:

G~m,k!5H P0~z!1FP2~z!1
k2

2
@P0~z!2P09~z!#G t

1•••J ezt/241•••, ~A25!

with z5mAt the scaled distance. The ASM calculations a
need the values ofG(m6l ,k) for small l , and those can
easily be obtained by expanding the previous result, yield
a Taylor series inAt.

The critical asymptotic expansion ofG(m,0) can also be
computed from Eq.~A20!. One has

@G~m,0!2G~m11,0!#ux545
1

4pE0

2p

dk1eik1mF~k1!,

~A26!

where F(x)5(12eix)/A(22cosx)221. A repeated use o
integration by parts then leads to

@G~m,0!2G~m11,0!#ux5452
1

4p (
k>1

~21!k

~ im!k @dx
k F#0

2p

5
1

2pH 1

m
2

1

2m2 1
1

2m3 2
1

2m4

1•••J , ~A27!

from which one deduces the subtracted Green function it
as

lim
x→4

@G~m,0!2G~0,0!#52
1

2p
logm2

1

p S g

2
1

3

4
log 2D

1
1

24p m2 1
43

480p m4

1
949

2016p m6 1•••. ~A28!

APPENDIX B: ABOUT THE SINK SITE

The evacuation of sand is a crucial ingredient in the s
organized criticality of the sandpile models. In order for
dynamics to be well defined—any unstable configuration
laxes to a stable one—each site should be pathwise
nected to a sink, where the sand goes that falls off the p
The sink is usually omitted in all discussions, perhaps
cause in the ordinary ASM only the boundary sites are c
nected to the sink, and the large volume limit takes them
infinity. In the massive ASM, however, each site is co
nected to the sink. One might thus worry about its poss
role in actual computations.
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We show here that the sink has in fact no effect at all a
can be omitted completely, be it in the usual or the mass
ASM. The argument is simple and worth being made exp
itly.

The discrete dynamics of the ASM recalled in the Intr
duction uses a toppling matrix that ignores the sink site s.
include it, one simply defines an extended toppling matrixDe
by adding toD a row and a column:

De5S 1 0

V D
D . ~B1!

The diagonal entry (De)s,s is set equal to 1, in order to freez
the height of the sink site. The rest of the first row is equa
0, since the sink has no connection to the sites of the pile.
the other hand, the first column is not zero:Vi ,s52ni if ni
grains of sand fall off the pile when sitei topples. The num-
berni is equal toni52( j D i , j , so that all row sums ofDe,
except the first one, are zero. In the usual ASM,Vi ,s is non-
zero for the boundary sites only, whereas in the mass
model all components are nonzero, withVi ,s542x for all
bulk sites. The formula for the number of recurrent config
rations remains valid, with obviously the same resu
detDe5detD.

The same method for computing probabilities and cor
lations of weakly allowed clusters works as before. One u
an extendedB matrix specifying the way the ASM needs b
modified:

Be5S 0 0

W BD . ~B2!

The first row is clearly always zero, but the first column c
be nonzero, depending on the modifications. For those ca
the ‘‘least economical’’ ones in Sec. II, in which one cuts t
cluster off the rest of the lattice, each sitei of the cluster is
left with a sole connection to the sink, so one setsWi55
2x.

The probability of a cluster variableS is given by the
usual formula, which as before reduces to a finite deter
nant

Prob~S!5
det~De1Be!

detDe
5det~I1De

21 Be!

5det~I1De
21 Be!uMSø$s% . ~B3!

However, the restriction toMSø$s% of De
21 Be is particularly

simple,

De
21 Be5S 1 0

2D21 V D21D S 0 0

W BD 5S 0 0

D21 W D21 BD ,

~B4!

and manifestly leads to the usual result, with no sink,

Prob~S!5det~I1D21 B!uMS
. ~B5!
0-18
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